ZINEG – The future has arrived in German horticulture
Research greenhouses and pioneers in horticultural praxis

Melanie Horscht and Dr. Dirk Ludolph
Research Station for Horticulture, Chamber of Agriculture Lower Saxony, Hanover, Germany
Joint research project (May 2009 – April 2014)

Main goal: reducing the use of fossil fuels and CO₂ emissions by 90% → interrelation of horticultural arrangements and technical innovations
ZINEG greenhouse Hanover
Greenhouse with maximum thermal insulation for pot plants
ZINEG subproject Hanover – working groups

Technical research work
Leibniz University of Hanover Biosystems & Horticultural Engineering Section (BGT)

Prof. Dr. H.-J. Tantau
Dipl. Ing. Klaus Knösel
M.Sc. Gökhan Akyazi

Horticultural research work
Chamber of Agriculture Lower Saxony Research Station for Horticulture Ahlem (LVG Ahlem)

Prof. Dr. B. Beßler
Dr. D. Ludolph
M.Sc. Melanie Horscht

Economic evaluation
Humboldt University Berlin Institute of Agricultural Economy

Prof. Dr. Wolfgang Bokelmann
M. Sc. Jochen Flenker
greenhouse concept for ornamental plant production

960 m² greenhouse surface, 2 sections

- in roof insulation double glazing, AR-coated
- PMMA-quadruple sheets (32 mm)
- 3 thermal screens
- using solar energy in a day-night storage heat pump, heat exchangers and water puffer tanks
- gas heating system
- (predominantly) closed ventilation
- supplement CO₂
greenhouse concept for ornamental plant production

3 thermal screens

- **day screen**
 20% shading/saving (SHS 15, B1, Co. Novavert)

- **thermal screen**
 50% shading/saving (PyroSilver 50, B1, Co. Reimann)

- **blackout system** with roll down twin system
 75% saving (XLS Obscura Revolux, Co. Svenson)
Reduction of fossil energy input by using solar energy

- Cooling + dehumidification
- Solar heat
 - 20 – 30°C
- Heat exchanger
- Heat pump
- Warm and cold water storage tanks
 - 38 – 40°C
 - 07 – 15°C
The low energy greenhouse – evaluation parameters

- **Thermal insulation**
 - (predominantly) closed ventilation
 - climate
 - light (reduction)

- **Using solar energy**
 - solar gain
 - cooling
 - dehumidification
 - energy balance

- **Plant quality**
 - cultivation
 - production time
 - diseases
 - stress compensation
1. Effects of thermal insulation measures

Energy savings (during night) in comparison with single glazing and single glazing + thermal screen

<table>
<thead>
<tr>
<th>measures to thermal insulation</th>
<th>U<sub>CS</sub>-value</th>
<th>saving</th>
<th>saving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W m<sup>2</sup> K<sup>-1</sup></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>insulation glass</td>
<td>4,0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>insulation glass + thermal screen</td>
<td>3,0</td>
<td>27</td>
<td>62</td>
</tr>
<tr>
<td>insulation glass + 2 thermal screens</td>
<td>2,1</td>
<td>47</td>
<td>72</td>
</tr>
<tr>
<td>insulation glass + 3 thermal screens</td>
<td>1,2</td>
<td>70</td>
<td>84</td>
</tr>
</tbody>
</table>

(Tantau, 2012)
3. Plant Quality

Investigations with different ornamental crops

<table>
<thead>
<tr>
<th>Year</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Petunia, Pelargonium</td>
<td>Helianthus</td>
<td>Poinsettia</td>
<td>Begonia</td>
</tr>
<tr>
<td>2011</td>
<td>Pelargonium</td>
<td>-</td>
<td>Poinsettia</td>
<td>Impatiens Neu-Guinea, Sunpatiens</td>
</tr>
<tr>
<td>2012</td>
<td>Streptocarpus, Capsicum, Hibiscus</td>
<td>-</td>
<td>Begonia, Hibiscus</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>Canna, Gerbera</td>
<td>-</td>
<td>Poinsettia</td>
<td>-</td>
</tr>
</tbody>
</table>

- Heat consumption measuring
Investigations with *Euphorbia pulcherrima* (July – December 2011)

'PLA Eckespoint Freedom Early'

<table>
<thead>
<tr>
<th>ready for selling</th>
<th>31.10.</th>
<th>28.11.</th>
<th>31.10.</th>
<th>21.11.</th>
<th>11.11.</th>
</tr>
</thead>
</table>

- 12°C HT
- 12°C HT
- 16°C HT
- 16°C HT
- standard

picture 30.11.2011
Thermal insulation
- energy saving up to 84%
- very good \((U_{cs} = 1.2) \)
- (predominantly) closed ventilation
- reduced heating energy input
- decreased PAR transmittance

Measures for praxis:
- roof – coated double layer plates (Alltop) or insulation glass with AR-coating
- side walls - triple layer plates
- three thermal screens
 - small screen packages
 - wire supported push-pull system using racks and pinions
Using solar energy

- 4 - 6 weeks in spring and autumn
- 30 – 100% substitution of fossile heating energy
- 5 - 25% electric energy for solar heat storage

Measures for praxis:

- heating system for using solar heat is economically unviable (at the moment!)
 - high power consumption
 - terms are too short

→ choose alternative heating systems/green fuels
Plant quality
- high air humidity but no increased in plant diseases
- decreased plant transpiration
- CO₂ concentration decreased (< 200 vpm)
- no differences to conventional greenhouse plant quality

Measures for praxis:
- reducing irrigation intervals
- increased fertilizer concentration
- air circulation by fans
- closed ventilation → CO₂ supplementation
Thermal insulation
- very good \((U_{cs} = 1,2) \)
- (predominantly) closed ventilation
- reduced heating energy input

Using solar energy
- 4 - 6 weeks in spring and autumn
- 30 – 100% substitution of fossil heating energy
- 5 - 25% electric energy for solar heat storage

plant quality
- no differences to conventional greenhouse plant quality
- high air humidity but no increased in plant diseases
- \(\text{CO}_2 \) concentration decreased (< 200 vpm)
- modification in cultivation

50 – 95% energy saving in ornamental crop production
Has ZINEG arrived in German horticulture praxis?
government aid „Bundesprogramm Energieeffizienz“ (2009 - 2012)
(Federal Office for Agriculture and Food)

aid requirements:
• rata grants were awarded up to a max. investment of 2,0 million Euro
• minimum investment volume 10,000 Euro
• maximum grant 400,000 Euro

modernization existing greenhouses
• minimum 30% or 50% decrease of energy consumption compared to reference greenhouse
• 30% saving → 20% grant or 50% saving → 30% grant

new low energy greenhouses
• minimum 35% or 50% decrease of energy consumption compared to reference greenhouse, 35% saving → 20% grant or 50% saving → 30% grant
• 80% of heat consumption in new greenhouses must be covered by renewable energy
• heat meter must be installed
Transfer into praxis

government aid „Bundesprogramm Energieeffizienz“

Number of applications: 58 greenhouses
(as at September 2012)

- **modernisation**
 - existing greenhouses (28)
 - vegetable growing: 6
 - floriculture: 17
 - marketing: 5

- **new construction**
 - low energy greenhouse (30)
 - vegetable growing: 9
 - floriculture: 14
 - marketing: 7
Pioneers in praxis Nursery Kern (Bavaria)
young plant and finished products
main crops: bedding plants, chrysanthemum, poinsettia

2.380 m² new greenhouse surface for ornamentals
startup April 2013

thermal insulation
• Alltop (Co. Evonik) in roof
• two-layer thermal screen, 63% shading (Co. Reimann)
• greenhouse can be divided into 3 climate compartments by roll able foil screens

heating systems
• 450 KW wood chip furnace
• solar heating system
 • heat pump (100 KW, 50°C flow temperature, COP controlled)
 • 12 x heat exchangers
 • 2 x 70 m³ heat storage water tanks (above ground)

2 x 430 m³ water buffer tanks, subsurface
Pioneers in praxis

Nursery Kern (Bavaria)
young plant and finished products
main crops: bedding plants, chrysanthemum, poinsettia

heating systems

• 450 KW wood chip furnace
• solar heating system with
 • heat pump (100 KW, 50°C flow temperature, COP controlled)
 • 12 x heat exchangers*
 • 2 x 70 m³ heat storage water tanks (above ground)

three heat distribution systems

• curing bags in table (low temperature heating, 25°C)
• under-bench heating system (Ø water temperature 42,5°C)
• *12 x bivalent ceiling heat exchangers (heating, cooling and dehumification; 80°C flow temperature)

→ 86% of average annual total heat demand could be covered by solar heat and heat pump
Pioneers in Praxis Co. Kientzler GmbH & Co. KG (Gensingen, Rhineland-Palatinate)
plant breeding, jung plant production

2,6 ha new Venlo-greenhouse, 6 m side walls

thermal insulation
- tempered safety glass in the roof
- 3 screens: day screen, transparent thermal screen, shading screen
- side walls quintuple PC-sheets
- greenhouse can be divided into five climate compartments by roll able foil screens

alternative energy sources
- 70% of energy demand is covered by wood pellets
- oil and gas heating system
- frequency controlled pumps

→ calculated energy saving up to 44%!
Zineg – The low energy greenhouse

Project grant